Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.083
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(3): 1665-1673, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471878

RESUMO

Changes in soil nitrogen components in tea gardens affect the soil nitrogen supply capacity and nitrogen cycle. In this study, soil samples were collected from forest land, cultivated land, and tea gardens with different plantation ages (30, 50, and 70 years) to explore the changes in soil nitrogen components and their relationship with physicochemical properties and enzyme activities. The results showed that:① with the increase in tea plantation age, the silt, total phosphorus, and urease and catalase activities gradually increased, whereas the sand, clay, pH, electrical conductivity, soil organic carbon, and the activities of invertase gradually decreased. The alkaline phosphatase activity increased first and then decreased with the increase in tea plantation age, and no significant differences were observed in soil water content and acid phosphatase activity. ② With the increase in tea plantation age, the contents of acid ammonia nitrogen, amino acid nitrogen, and nitrate nitrogen (NO3--N) increased significantly, and the contents of total nitrogen, acid ammonia nitrogen, hydrolyzable unknown nitrogen, and non-hydrolyzable nitrogen in tea gardens were significantly higher than those in forest land. ③ The total phosphorus, alkaline phosphatase, and urease were the main factors affecting soil nitrogen components. Among them, organic nitrogen components were significantly correlated with total phosphorus and alkaline phosphatase, and inorganic nitrogen components were significantly correlated with alkaline phosphatase, whereas total nitrogen had significant correlations with sand, silt, total phosphorus, urease, and alkaline phosphatase.


Assuntos
Fosfatase Alcalina , Solo , Solo/química , Areia , Nitrogênio/análise , Carbono , Urease , Amônia , Fósforo/análise , Chá , Microbiologia do Solo , China
2.
J Ethnopharmacol ; 326: 117905, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38364934

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pi-pa-run-fei-tang (PPRFT), a traditional Chinese medicine formula with long-standing history, demonstrated beneficial effect on chronic cough. However, the mechanism underlying efficacy unclear. In current research, we explored the impact and molecular mechanism of chronic cough mouse stimulating with capsaicin combined with ammonia. AIM OF THE STUDY: To investigate the metabolic modulating effects, and potential mechanisms underlying the therapeutic effect of PPRFT in chronic cough. MATERIALS AND METHODS: Chronic cough mouse models were created by stimulating mice by capsaicin combined with ammonia. Number of coughs and cough latency within 2 min were recorded. With lung tissue and serum samples collected for histopathology, metabolomics, RT-qPCR, immunohistochemistry, and WB analysis. Lymphocytes were isolated and flow cytometric assays were conducted to evaluate the differentiation between Th17 and Treg cell among CD4+ cells. RESULTS: Results indicated that PPRFT obviously reduced the number of coughs, prolonged cough latency, reduced inflammatory cell infiltration and lung tissues damage, and decreased the serum level of IL-6, IL-1ß, TNF-α, and IL-17 while increasing IL-10 levels. Notably, PPRFT suppressed Th17 cell divergence and promoted Treg cell divergence. Furthermore, serum metabolomic assays showed that 46 metabolites differed significantly between group, with 35 pathways involved. Moreover, mRNA levels of IL-6, NF-κB, IL-17, RORγT, JAK2, STAT3, PI3K and AKT in lung tissues remarkably reduced and mRNA levels of IL-10 and FOXP3 were elevated after PPRFT pretreatment. Additionally, PPRFT treatments decreased the protein levels of IL-6, NF-κB, IL-17, RORγT, p-JAK2, p-STAT3, p-PI3K, and p-AKT and increased the protein levels of IL-10 and FOXP3, but no significantly effects to the levels on JAK2, STAT3, PI3K, and AKT in the lungs. CONCLUSION: Conclusively, our result suggested the effect with PPRFT on chronic cough may be mediated through IL-6/JAK2/STAT3 and PI3K/AKT/NF-κB pathway, which regulate the differentiation between Th17 and Treg cell. This beneficial effect of PPRFT in capsaicin and ammonia-stimulated chronic cough mice indicates its potential application in treating chronic cough.


Assuntos
Citocinas , Interleucina-10 , Camundongos , Animais , Interleucina-10/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , NF-kappa B/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Amônia/metabolismo , Interleucina-6/metabolismo , Tosse Crônica , Capsaicina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , RNA Mensageiro/metabolismo , Células Th17
3.
J Environ Manage ; 354: 120328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354615

RESUMO

This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.


Assuntos
Bacillus , Compostagem , Microbiota , Animais , Bacillus/metabolismo , Galinhas , Esterco/microbiologia , Odorantes , Amônia/análise , Nitrogênio/análise , Bactérias/metabolismo , Nutrientes , Fósforo , Potássio , Solo/química
4.
J Environ Manage ; 353: 120241, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301473

RESUMO

With global population growth and climate change, food security and global warming have emerged as two major challenges to agricultural development. Plastic film mulching (PM) has long been used to improve yields in rain-fed agricultural systems, but few studies have focused on soil gas emissions from mulched rainfed potatoes on a long-term and regional scale. This study integrated field data with the Denitrification-Decomposition (DNDC) model to evaluate the impacts of PM on potato yields, greenhouse gas (GHG) and ammonia (NH3) emissions in rainfed agricultural systems in China. We found that PM increased potato yield by 39.7 % (1505 kg ha-1), carbon dioxide (CO2) emissions by 15.4 % (123 kg CO2 eq ha-1), nitrous oxide (N2O) emissions by 47.8 % (1016 kg CO2 eq ha-1), and global warming potential (GWP) by 38.9 % (1030 kg CO2 eq ha-1), while NH3 volatilization decreased by 33.9 % (8.4 kg NH3 ha-1), and methane (CH4) emissions were little changed compared to CK. Specifically, the yield after PM significantly increased in South China (SC), North China (NC), and Northwest China (NWC), with increases of 66.1 % (2429 kg ha-1), 44.1 % (1173 kg ha-1), and 43.6 % (956 kg ha-1) compared to CK, respectively. The increase in GWP and greenhouse gas emission intensity (GHGI) under PM was more pronounced in the Northeast China (NEC) and NWC regions, with respective increases of 57.1 % and 60.2 % in GWP, 16.9 % and 10.3 % in GHGI. While in the Middle and Lower reaches of the Yangtze River (MLYR) and SC, PM decreased GHGI with 10.2 % and 31.1 %, respectively. PM significantly reduced NH3 emissions in all regions and these reductions were most significant in Southwest China (SWC), SCand MLYR, which were 41 %, 38.0 %, and 38.0 % lower than CK, respectively. In addition, climatic and edaphic variables were the main contributors to GHG and NH3 emissions. In conclusion, it is appropriate to promote the use of PM in the MLYR and SC regions, because of the ability to increase yields while reducing environmental impacts (lower GHGI and NH3 emissions). The findings provide a theoretical basis for sustainable agricultural production of PM potatoes.


Assuntos
Gases de Efeito Estufa , Solanum tuberosum , Gases de Efeito Estufa/análise , Amônia , Dióxido de Carbono/análise , Agricultura , Solo , China , Metano/análise , Óxido Nitroso/análise , Fertilizantes/análise
5.
J Contam Hydrol ; 261: 104287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219283

RESUMO

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.


Assuntos
Aprendizado Profundo , Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Amônia/análise , Poluentes Químicos da Água/análise , Rios/química , Nitrogênio/análise , Fósforo , China , Poluição da Água/análise
6.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185392

RESUMO

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Assuntos
Amônia , Gastrópodes , Animais , Dieta , Antioxidantes/metabolismo , Gastrópodes/metabolismo , Imunidade Inata , Expressão Gênica , Músculos/metabolismo , Superóxido Dismutase/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Xantofilas
7.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 324-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867426

RESUMO

Nowadays, the use of seaweed derivatives in aquaculture has drawn attention for their potential as an immunostimulant and growth promotor. The sulfated polysaccharide extracted (SPE ) from green (Caulerpa sp.; SPC) and brown (Padina sp.; SPP) seaweeds with two concentrations (0.05% and 0.1%); nominated in four groups: SPC0.05 , SPC0.1 , SPP0.05 , SPP0.1 and control group (free of SPE ) were used for juvenile rainbow trout (Oncorhynchus mykiss) diet. Fish (N: 150; 8.5 ± 0.2 g) were selected aleatory distributed in 15 circular tanks (triplicate for the group) and fed test diets for 56 days. The outcomes revealed that the supplementation of SPE up to 1 g kg-1 failed to show significant differences in the organosomatic indices as compared to the control group. The most inferior protein value of dress-out fish composition was observed in the fish fed the control diet, which was statistically lower than the SCP0.1 group (p < 0.05), while no significant difference was observed in other macronutrient composition among the treatments. Total monounsaturated fatty acid (MUFA) had lower trend in the carcass of fish fed SPE supplemented diets, so that lowest MUFA were observed in SPC0.05 group (p < 0.05; 25.22 ± 4.29%). The lowest value of docosahexaenoic acid was observed in the control diet compared to the SPE -supplemented diets (p < 0.05). The serum alternative complement pathway levels in all treatments tend to promote compared to the control treatment. A similar trend was observed for lysozyme activity. According to the results, the superoxide dismutase (SOD) value were highest in SPC0.05 and SPC0.1 compared to the other treatments (p < 0.05), while a further elevation of the SPE Padina sp. extracted level (SPP0.1 ) leads to a decrease in SOD value. Thiobarbituric acid reactive substances of plasma was indicated not to influence by sulfated polysaccharide extracts in the refrigerated storage. The lowest serum stress indicators were observed in fish fed SPP0.05 group postchallenge test. Taken together, our outcomes revealed that SPE of two species of seaweeds bestows benefits in some of the immunity and antioxidant system. Also, notable elevations in HUFA were observed in juvenile rainbow trout fed supplemented with SPE .


Assuntos
Caulerpa , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Amônia/metabolismo , Caulerpa/metabolismo , Sulfatos , Suplementos Nutricionais , Dieta/veterinária , Superóxido Dismutase/metabolismo , Ração Animal/análise
8.
Bioresour Technol ; 393: 130067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989418

RESUMO

Electrical assistance is an effective strategy for promoting anaerobic digestion (AD) under ammonia stress. However, the underlying mechanism of electrical assistance affecting AD is insufficiently understood. Here, electrical assistance to AD under 5 g N/L ammonia stress was provided, by employing a 0.6 V voltage to the carbon electrodes. The results demonstrated remarkable enhancements in methane production (104.6 %) and the maximal methane production rate (207.7 %). The critical segment facilitated by electro-stimulation was the microbial metabolism of propionate-to-methane, rather than ammonia removal. Proteins in extracellular polymer substances were enriched, boosting microbial resilience to ammonia intrusion. Concurrently, the promoted humic/fulvic-substances amplified the microbial electron transfer capacity. Metagenomics analysis identified the upsurge of propionate oxidation at the anode (by e.g. unclassified_c__Bacteroidia), and the stimulations of acetoclastic and direct interspecies electron transfer-dependent CO2-reducing methanogenesis at the cathode (by e.g. Methanothrix). This study provides novel insights into the effect of electrical assistance on ammonia-stressed AD.


Assuntos
Amônia , Propionatos , Propionatos/metabolismo , Anaerobiose , Elétrons , Metano/metabolismo , Reatores Biológicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38103625

RESUMO

In the present study, we explored the capability of manganese nanoparticles (Mn-NPs) to alleviate the toxicity induced by lead (Pb) and ammonia (NH3) toxicity in Oreochromis niloticus (GIFT strain). The experiment followed a completely randomized design, including a control group (Mn-NPs-0 mg kg-1 diet) and groups exposed to Pb and NH3 alongwith Mn-NPs at 2 and 3 mg kg-1. Cortisol levels were significantly elevated in Pb + NH3 group whereas reduced by Mn-NPs diets. Gene expressions of HSP 70, iNOS, CYP 450, and Cas 3a were notably upregulated by Pb + NH3 group and downregulated by Mn-NPs diets. The cellular metabolic enzymes were affected by Pb + NH3 exposure and mitigated by Mn-NPs diets. The liver and kidney exhibited reduced activities of catalase, superoxide dismutase, and glutathione-s-transferase with Mn-NPs diets. Concurrently, immune-related genes such as total immunoglobulin (Ig) and tumor necrosis factor (TNFα) were upregulated in the Mn-NPs-fed groups. Growth performance indicators, including weight gain %, feed conversion ratio, specific growth rate, protein efficiency ratio, and relative feed intake were adversely affected by Pb + NH3 stress but improvement with Mn-NPs diets. Genes associated with growth performance, such as growth hormone (GH), growth hormone regulatory (GHR1), and myostatin, exhibited enhancements in response to Mn-NPs diets. Digestive enzymes, including protease and amylase were also enhanced by Mn-NPs diets. Additionally, Mn-NPs diets led to a reduction in the bioaccumulation of lead. This study aims to investigate the role of Mn-NPs in mitigating the effects of lead and ammonia toxicity on fish by examining various biochemical and gene regulatory factors to enhance fish wellbeing.


Assuntos
Ciclídeos , Suplementos Nutricionais , Animais , Manganês , Amônia/toxicidade , Chumbo/toxicidade , Dieta/veterinária , Antioxidantes/metabolismo , Peixes/metabolismo , Hormônio do Crescimento , Ração Animal/análise , Ciclídeos/metabolismo
10.
J Environ Manage ; 351: 119864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109823

RESUMO

It is well accepted that tidal wetland vegetation performs a significant amount of water filtration for wetlands. However, there is currently little information on how various wetland plants remove nitrogen (N) and phosphorus (P) and how they differ in their denitrification processes. This study compared and investigated the denitrification and phosphorus removal effects of three typical wetland plants in the Yangtze River estuary wetland (Phragmites australis, Spartina alterniflora, and Scirpus mariqueter), as well as their relevant mechanisms, using an experimental laboratory-scale horizontal subsurface flow constructed wetland (CW). The results showed that all treatment groups with plants significantly reduced N pollutants as compared to the control group without plants. In comparison to S. mariqueter (77.2-83.2%), S. alterniflora and P. australis had a similar total nitrogen (TN)removal effectiveness of nearly 95%. With a removal effectiveness of over 99% for ammonium nitrogen (NH4+-N), P. australis outperformed S. alterniflora (95.6-96.8%) and S. mariqueter (94.6-96.5%). The removal of nitrite nitrogen (NO2--N)and nitrate nitrogen (NO3--N)from wastewater was significantly enhanced by S. alterniflora compared to the other treatment groups. Across all treatment groups, the removal rate of PO43--P was greater than 95%. P. australis and S. alterniflora considerably enriched more 15N than S. mariqueter, according to the results of the 15N isotope labeling experiment. While the rhizosphere and bulk sediments of S. alterniflora were enriched with more simultaneous desulfurization-denitrification bacterial genera (such as Paracoccus, Sulfurovum, and Sulfurimonas), which have denitrification functions, the rhizosphere and bulk sediments of P. australis were enriched with more ammonia-oxidizing archaea and ammonia-oxidizing bacteria. As a result, compared to the other plants, P. australis and S. alterniflora demonstrate substantially more significant ability to remove NH4+-N and NO2--N/NO3--N from simulated domestic wastewater.


Assuntos
Nitrogênio , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Amônia , Dióxido de Nitrogênio , Águas Residuárias , Plantas , Poaceae , China
11.
J Environ Manage ; 351: 119848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113787

RESUMO

To efficiently remove nutrients from low C/N sanitary sewage by conventional biological process is challenging due to the lack of sufficient electron donors. A novel electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) was established to promote nitrogen and phosphorus removal for sanitary sewage with low C/N ratios (3.5-1.5). Highly efficient removal of nitrogen (>79%) and phosphorus (>97%) was achieved in the E-SBBR operating under alternating anoxic/electrolysis-anoxic/aerobic conditions. The coexistence of autotrophic nitrifiers, electron transfer-related bacteria, and heterotrophic and autohydrogenotrophic denitrifiers indicated synergistic nitrogen removal via multiple nitrogen-removing pathways. Electrolysis application induced microbial anoxic ammonia oxidation, autohydrogenotrophic denitrification and electrocoagulation processes. Deinococcus enriched on the electrodes were likely to mediate the electricity-driven ammonia oxidation which promoted ammonia removal. PICRUSt2 indicated that the relative abundances of key genes (hyaA and hyaB) associated with hydrogen oxidation significantly increased with the decreasing C/N ratios. The high autohydrogenotrophic denitrification rates during the electrolysis-anoxic period could compensate for the decreased heterotrophic rates resulting from insufficient carbon sources and nitrate removal was dramatically enhanced. Electrocoagulation with iron anode was responsible for phosphorus removal. This study provides insights into mechanisms by which electrochemically assisted biological systems enhance nutrient removal for low C/N sanitary sewage.


Assuntos
Desnitrificação , Esgotos , Nitrificação , Amônia , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Eletrólise , Biofilmes , Nutrientes , Fósforo
12.
Eur Rev Med Pharmacol Sci ; 27(22): 11131-11142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38039045

RESUMO

BACKGROUND: Urea cycle disorders (UCDs) are a group of rare inborn diseases caused by a deficiency in one of the six enzymes or one of the two transporters involved in the urea cycle. The most common biochemical feature is elevated blood ammonia levels, which can be toxic at high levels, especially to the brain and may manifest as encephalopathy if left untreated. Glycerol phenylbutyrate (GPB) is currently approved for use in the USA and Europe for patients of all ages with UCD who cannot be managed with protein restriction and/or amino acid supplementation alone. This article presents the author's experience in different exemplary settings and depicts the most efficient management of UCDs with GPB. CASE PRESENTATION: Six patient histories are described. 4 had OCT, one citrullinemia, and one argininosuccinic aciduria. Treatment with GPB was started between 2 days and 14 years of age. Before GPB, one patient had not been treated, 4 had received sodium phenylbutyrate (NaPB), and one Na benzoate. CONCLUSIONS: Overall, treatment with GPB was followed by a relevant metabolic improvement, resulting in better therapeutic compliance, reduced hospitalization, and improved quality of life.


Assuntos
Qualidade de Vida , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Glutamina/metabolismo , Amônia/metabolismo , Amônia/uso terapêutico , Distúrbios Congênitos do Ciclo da Ureia/tratamento farmacológico , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Ureia/uso terapêutico , Ureia/metabolismo
13.
J Tradit Chin Med ; 43(6): 1110-1117, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946473

RESUMO

OBJECTIVE: To study the anti-inflammatory and anti-tussive effects of Qingfei Dayuan granules (, QFDY), and to evaluate the acute and sub-chronic toxicity of QFDY. METHODS: Anti-inflammatory effects were evaluated by murine model of xylene induced ear edema in mice. Ear swelling degree was calculated and tumor necrosis factor-α, interleukin-1ß and interleukin-6 were determined. Anti-tussive evaluations were carried out in the mouse cough model induced by ammonia liquor. Latent period cough and number of cough within 3 min were counted. In acute toxicity study, the rats were randomly divided into test group and solvent control group. Body weighs, food intakes and general clinical signs were monitored. In the sub-chronic toxicity study, QFDY was administered to rats at 0, 4, 8 and 16 g/kg per day for 28 and 30 d of post treatment was conducted. Mortalities, clinical signs, body weight changes, food intakes, ophthalmological examinations, hematological parameters, biochemical indicators, electrolyte indicators, urinalyses and histopathological examinations were monitored. RESULTS: QFDY significantly inhibited the development of ear edema in anti-inflammatory assay and decreased cough frequency caused by ammonia liquor. The results presented a dose-effect relationship. In acute toxicity study, no abnormality exhibited at dose of 24.0 g/kg per day during the 14-d observation period. In the sub-chronic toxicity study, higher reticulocyte count, lymphocyte and lower Cl-, blood urea nitrogen were analyzed compared with the solvent control group. But the differences were considered to be incidental and not clinically toxic. Obvious dose-effect relationship of urine color was observed, and the three test groups at the end of the experiments resulted in significant increase in urobilinogen, bilirubin, ketone body and urine leukocyte. However, all the positive indicators returned to normal in the recovery period. Therefore, no toxicological changes were found during the study period. CONCLUSION: QFDY showed significant anti-inflammatory and anti-tussive effects in mice. The lethal dose (LD50) of per oral QFDY in rats was estimated to be more than 24.0 g/kg per day and the no observed adverse effect level was over 16 g/kg per day, which suggested that QFDY is relatively safe for oral medication at the present dose on rats. Our experimental results provide a reference for the further development and research of QFDY.


Assuntos
Tosse , Extratos Vegetais , Ratos , Camundongos , Animais , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Amônia/uso terapêutico , Testes de Toxicidade Aguda , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/toxicidade , Solventes/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico
14.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2601-2609, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897266

RESUMO

We sieved soils from a Pinus massoniana plantation in the Three Gorges Reservoir area into four aggregate sizes, including aggregates of 2000-8000 µm (large macroaggregates), 1000-2000 µm (coarse aggregates), 250-1000 µm (small macroaggregates), and <250 µm (microaggregates). We analyzed the differences in the acidolyzable organic N components and net N mineralization of the aggregates under different N addition levels (30, 60, and 90 kg N·hm-2·a-1, representing by N30, N60 and N90, respectively). The results showed that net nitrification rate of the aggregates ranged from 0.30-3.42 mg N·kg-1 and accounted for more than 80% of net nitrogen mineralization. Compared with the control, addition of 30, 60, and 90 kg N·hm-2·a-1 increased total N by 24.1%-45.5%, 6.4%-34.3%, and 7.9%-42.4% in the large aggregates, coarse aggregate, small macroaggregates, and microaggregates, increased net N mineralization rate by 1.3-7.2, 1.4-6.6, and 1.8-12.9 times, but decreased the contents of available phosphorus by 9.3%-36.9%, 12.2%-56.7%, and 19.2%-61.9%, respectively. The contents of total acidolyzable N, soil organic matter, and rates of net ammonification, net nitrification, and net N mineralization increased as the aggregate size decreased, while available phosphorus contents showed an opposite trend. The levels of acid-hydrolyzable N components were ranked as acidolyzable amino acid N > acidolyzable ammonia N > acidolyzable unknown N> acidolyzable amino sugar N. Total N was the dominant contributor to the increases in acid-hydrolyzable N components. Results of stepwise multiple regression analyses showed that acidoly-zable amino acid N and acidolyzable amino sugar N were predictors of net ammonification rate. Acidolyzable amino sugar N, acidolyzable amino acid N, and acidolyzable ammonia N were predictors of net nitrification, net nitrogen mineralization rate, and net nitrogen mineralization accumulation. The physical structure of aggregates was associa-ted with soil net N mineralization. Addition of N increased the contents and bioavailability of acidolyzable organic N, a large amount of which contributed to soil organic matter levels and the decrease in available phosphorus.


Assuntos
Nitrogênio , Pinus , Nitrogênio/análise , Amônia/análise , Solo/química , Fósforo/análise , China , Aminoácidos , Amino Açúcares , Carbono/análise
15.
Water Res ; 247: 120772, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898003

RESUMO

Existing conventional biological treatment techniques face numerous limitations in effectively removing total petroleum hydrocarbons (TPHs) and ammonia (NH4+-N) from oilfield-produced water (OPW), highlighting the pressing need for innovative pre-oxidation and biological treatment processes. In this study, a pyrite-activated peroxymonosulfate (PMS)-coupled heterotrophic ammonia assimilation (HAA) system was established to achieve satisfactory system performance for OPW treatment. Pyrite sustained-release Fe2+-activated PMS was used to produce SO4•- and •OH, and 71.0 % of TPHs were effectively removed from the oil wastewater. The average TPHs and NH4+-N removal efficiencies in the test group with pre-oxidation were 96.9 and 98.3 %, compared to 46.5 and 77.1 % in the control group, respectively. The maximum fluorescence intensities of tryptophan protein and aromatic protein in the test group declined by 83.7 %. Fourier transform ion cyclotron resonance mass spectrometry revealed that pre-oxidation degraded more long-chain hydrocarbons and aromatic family compound, whereas the HAA process produced more proteins and carbohydrates. Pyrite-PMS promoted the enrichment of ammonia-assimilating bacteria, alleviating the explosive increase in extracellular polymeric substances and reducing sludge settleability. The low cost, efficiency, green chemistry principles, and synergies of this approach make it a powerful solution for practical OPW treatment to reduce environmental impacts and promote sustainable wastewater treatment.


Assuntos
Amônia , Petróleo , Campos de Petróleo e Gás , Salinidade , Água , Hidrocarbonetos
16.
Int J Biol Macromol ; 253(Pt 8): 127515, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865353

RESUMO

Pectic polysaccharides modulate gut fermentation ability, which is determined by structural characteristics. In this work, apple pectins were extracted by HCl (HAEP), NaOH (AEP), cellulase (EAEP), and in parallel cell wall pectic fractions were sequentially extracted by water (WEP), chelator (CEP) and NaOH (NEP). The aim is to comprehensively compare the impact of extraction on pectin structure and gut fermentation behavior. Results showed that high content of galacturonic acid (90.65 mol%) and large molecular weight (675 kg/mol) were detected in the HAEP. Molecular morphology of the HAEP presented high linearity, while AEP, EAEP and WEP exhibited compact filamentous structures with highly branched patterns. The AEP was characterized by high yield (33.1 g/100 g d.b.), moderate molecular weight (304 kg/mol) and large extent of rhamnogalacturonan-I region (24.88 %) with low degree of branching (1.77). After in vitro simulated gut fermentation for 24 h, total content of short-chain fatty acid (SCFA) generated with the AEP supplement increased to 36.8 mmol/L, followed by EAEP, HAEP and WEP (25.2, 24.2 and 20.3 mmol/L, respectively). Meanwhile, WEP simultaneously produced the highest ammonia content (22.4 mmol/L). This investigation suggests that the fermentation of AEP produces more beneficial SCFA and less ammonia, thus indicating a better gut fermentation property.


Assuntos
Amônia , Pectinas , Fermentação , Amônia/metabolismo , Hidróxido de Sódio , Pectinas/química , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo , Parede Celular/química
17.
Nat Immunol ; 24(11): 1921-1932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813964

RESUMO

The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.


Assuntos
Ácidos Cetoglutáricos , NAD , Humanos , Oxirredução , NAD/metabolismo , Ácidos Cetoglutáricos/metabolismo , Amônia , Malatos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecção Persistente , Antivirais
18.
Ecotoxicol Environ Saf ; 266: 115533, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806127

RESUMO

High environment ammonia (HEA) poses a deadly threat to aquatic animals and indirectly impacts human healthy life, while nutritional regulation can alleviate chronic ammonia toxicity. α-lipoic acid exhibits antioxidative effects in both aqueous and lipid environments, mitigating cellular and tissue damage caused by oxidative stress by aiding in the neutralization of free radicals (reactive oxygen species). Hence, investigating its potential as an effective antioxidant and its protective mechanisms against chronic ammonia stress in crucian carp is highly valuable. Experimental fish (initial weight 20.47 ± 1.68 g) were fed diets supplemented with or without 0.1% α-lipoic acid followed by a chronic ammonia exposure (10 mg/L) for 42 days. The results revealed that chronic ammonia stress affected growth (weight gain rate, specific growth rate, and feed conversion rate), leading to oxidative stress (decreased the activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase; decreased total antioxidant capacity), increased lipid peroxidation (accumulation of malondialdehyde), immune suppression (decreased contents of nonspecific immune enzymes AKP and ACP, 50% hemolytic complement, and decrease of immunoglobulin M), impaired ammonia metabolism (reduced contents of Glu, GS, GSH, and Gln), imbalance of expression of induced antioxidant-related genes (downregulation of Cu/Zu SOD, CAT, Nrf2, and HO-1; upregulation of GST and Keap1), induction of pro-apoptotic molecules (transcription of BAX, Caspase3, and Caspase9), downregulation of anti-apoptotic gene Bcl-2 expression, and induction of endoplasmic reticulum stress (upregulation of IRE1, PERK, and ATF6 expression). The results suggested that the supplementation of α-lipoic acid could effectively induce humoral immunity, alleviate oxidative stress injury and endoplasmic reticulum stress, and ultimately alleviate liver injury induced by ammonia poisoning (50-60% reduction). This provides theoretical basis for revealing the toxicity of long-term ammonia stress and provides new insights into the anti-ammonia toxicity mechanism of α-lipoic acid.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Ácido Tióctico , Animais , Humanos , Carpas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Tióctico/farmacologia , Carpa Dourada/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação
19.
Pediatr Clin North Am ; 70(5): 979-993, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37704355

RESUMO

In some relatively common inborn errors of metabolism there can be the accumulation of toxic compounds including ammonia and organic acids such as lactate and ketoacids, as well as energy deficits at the cellular level. The clinical presentation is often referred to as a metabolic emergency or crisis. Fasting and illness can result in encephalopathy within hours, and without appropriate recognition and intervention, the outcome may be permanent disability or death. This review outlines easy and readily available means of recognizing and diagnosing a metabolic emergency as well as general guidelines for management. Disease-specific interventions focus on parenteral nutrition to reverse catabolism, toxin removal strategies, and vitamin/nutrition supplementation.


Assuntos
Amônia , Estado Nutricional , Humanos , Cetoácidos , Ácido Láctico
20.
Bioresour Technol ; 388: 129752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714495

RESUMO

Photosynthetic O2 is a promising alternative for mechanical aeration, the major energy-intensive unit in wastewater treatment plants. This study aimed to investigate the effects of light intensity varied from 190 to 1400 µmol·s-1·m-2 on photosynthetic O2-supported algal-bacterial aerobic granular sludge (AGS) system. Results indicate photosynthetic O2 can implement aerobic phosphorus (P) uptake and ammonia oxidation under the test illumination range even at dissolved oxygen concentration < 0.5 mg/L. An obvious O2 accumulation occurred after 60-90% nutrients being removed under 330-1400 µmol·s-1·m-2, and highly efficient ammonia removal, P uptake, and dissolved inorganic carbon removal were achieved under 670-1400 µmol·s-1·m-2. On the other hand, photosynthesis as O2 supplier showed little effect on major ions except for K+. This study provides a better understanding of the roles of light intensity on photosynthetic O2-supported algal-bacterial AGS system, targeting a sustainable wastewater industry.


Assuntos
Esgotos , Águas Residuárias , Nitrogênio , Fósforo , Oxigênio , Carbono , Amônia , Reatores Biológicos , Bactérias Gram-Negativas , Bactérias , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA